Quaternionic Fourier-Mellin Transform

نویسنده

  • Eckhard Hitzer
چکیده

In this contribution we generalize the classical Fourier Mellin transform [3], which transforms functions f representing, e.g., a gray level image defined over a compact set of R. The quaternionic Fourier Mellin transform (QFMT) applies to functions f : R → H, for which |f | is summable over R+ × S under the measure dθ dr r . R ∗ + is the multiplicative group of positive and non-zero real numbers. We investigate the properties of the QFMT similar to the investigation of the quaternionic Fourier Transform (QFT) in [5, 6]. 1. Quaternions Gauss, Rodrigues and Hamilton introduced the 4D quaternion algebra H over R with three imaginary units: (1) ij = −ji = k, jk = −kj = i, ki = −ik = j, i = j = k = ijk = −1. Every quaternion (2) q = qr + qii+ qjj + qkk ∈ H, qr, qi, qj, qk ∈ R has quaternion conjugate (reversion in Cl 3,0) (3) q̃ = qr − qii− qjj − qkk, This leads to norm of q ∈ H, and an inverse of every non-zero q ∈ H (4) |q| = √ qq̃ = √ q2 r + q 2 i + q 2 j + q 2 k, |pq| = |p||q|, q −1 = q̃ |q|2 = q̃ qq̃ . The scalar part of quaternions is symmetric (5) Sc(q) = qr = 1 2 (q + q̃), Sc(pq) = Sc(qp). The inner product of quaternions defines orthogonality (6) Sc(pq̃) = prqr + piqi + pjqj + pkqk ∈ R. 1Remark: By reading this paper you agree to the terms of the Creative Peace License of page 132. 123 ar X iv :1 30 6. 16 69 v1 [ m at h. R A ] 7 J un 2 01 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Color Fourier-Mellin descriptors for image recognition

We propose new sets of Fourier-Mellin descriptors for color images. They are constructed using the Clifford Fourier Transform of Batard et al. (2010) and are an extension of the classical Fourier-Mellin descriptors for grayscale images. These are invariant under direct similarity transformations (translations, rotations, scale) and marginal treatment of colors images is avoided. An implementati...

متن کامل

Homography estimation using Analytical Fourier-Mellin Transform

The paper presents a registration algorithm based on the Analytical Fourier-Mellin Transform (AFMT). In the Fourier Mellin registration algorithm, the estimation of the geometrical transformation is only done in the Fourier Transform phase domain which is known by containing the shape information. The proposed algorithm will be used to estimate homography since in the vicinity of key points, we...

متن کامل

Clifford Fourier-Mellin transform with two real square roots of -1 in Cl(p, q), p+q=2

We describe a non-commutative generalization of the complex Fourier-Mellin transform to Clifford algebra valued signal functions over the domain Rp,q taking values in Cl(p,q), p+q = 2.

متن کامل

Hand detection in cluttered scene images using Fourier-Mellin invariant features

This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-bas...

متن کامل

GENERAL SOLUTION OF ELASTICITY PROBLEMS IN TWO DIMENSIONAL POLAR COORDINATES USING MELLIN TRANSFORM

Abstract In this work, the Mellin transform method was used to obtain solutions for the stress field components in two dimensional (2D) elasticity problems in terms of plane polar coordinates. the Mellin transformation was applied to the biharmonic stress compatibility equation expressed in terms of the Airy stress potential function, and the boundary value problem transformed to an algebraic  ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1306.1669  شماره 

صفحات  -

تاریخ انتشار 2013